lunes, 29 de noviembre de 2010

Agujeros negros


Descubrimiento de la energía oscura

En 1998 las observaciones de supernovas de tipo 1a muy lejanas, realizadas por parte del Supernova Cosmology Project en el Laboratorio Nacional Lawrence Berkeley y el High-z Supernova Search Team, sugirieron que la expansión del Universo se estaba acelerando.Desde entonces, esta aceleración se ha confirmado por varias fuentes independientes. Así como una mejora en las medidas de las supernovas han sido consistentes con el modelo Lambda-CDM.
Las supernovas de tipo 1a proporcionan la principal prueba directa de la existencia de la energía oscura. Debido a la Ley de Hubble, todas las galaxias lejanas se alejan aparentemente de la Vía Láctea, mostrando un desplazamiento al rojo en el espectro luminoso debido al efecto Doppler. La medición del factor de escala en el momento que la luz fue emitida desde un objeto es obtenida fácilmente midiendo el corrimiento al rojo del objeto en recesión. Este desplazamiento indica la edad de un objeto lejano de forma proporcional, pero no absoluta. En 1998 varias observaciones de estas supernovas en galaxias muy lejanas demostraron que la constante de Hubble no es tal, sino que su valor varía con el tiempo. Hasta ese momento se pensaba que la expansión del Universo se estaba frenando debido a la fuerza gravitatoria; sin embargo, se descubrió que se estaba acelerando, por lo que debía existir algún tipo de fuerza que acelerase el Universo.
La consistencia en magnitud absoluta para supernovas tipo 1a se ve favorecida por el modelo de una estrella enana blanca vieja que gana masa de una estrella compañera y crece hasta alcanzar el límite de Chandrasekhar definido de manera precisa. Con esta masa, la enana blanca es inestable ante fugas termonucleares y explota como una supernova tipo 1a con un brillo característico. El brillo observado de la supernova se pinta frente a su corrimiento al rojo y esto se utiliza para medir la historia de la expansión del Universo. Estas observaciones indican que la expansión del Universo no se está desacelerando, como sería de esperar para un Universo dominado por materia, sino más bien acelerándose. Estas observaciones se explican suponiendo que existe un nuevo tipo de energía con presión negativa.
La existencia de la energía oscura, de cualquier forma, es necesaria para reconciliar la geometría medida del espacio con la suma total de materia en el Universo. Las medidas del fondo cósmico de microondas más recientes, realizadas por el satélite WMAP, indican que el Universo está muy cerca de ser plano. Para que la forma del Universo sea plana, la densidad de masa/energía del Universo tiene que ser igual a una cierta densidad crítica. Posteriores observaciones del fondo cósmico de microondas y de la proporción de elementos formados en elBig Bang han puesto un límite a la cantidad de materia bariónica y materia oscura que puede existir en el Universo, que cuenta sólo el 30% de la densidad crítica. Esto implica la existencia de una forma de energía adicional que cuenta el 70% de la masa energía restante. Estos estudios indican que el 73% de la masa del Universo está formado por la energía oscura, un 23% es materia oscura y un 4% materia bariónica. La teoría de la estructura a gran escala del Universo, que determina la formación de estructuras en el Universo (estrellas, quasars, galaxias y agrupaciones galácticas), también sugiere que la densidad de materia en el Universo es sólo el 30% de la densidad crítica.

Naturaleza de la energía oscura

Según estimaciones recientes, resumidas en este gráfico de la NASA, alrededor del 70% del contenido energético del Universo consiste en energía oscura, cuya presencia se infiere en su efecto sobre la expansión del Universo pero sobre cuya naturaleza última no se sabe casi nada.
La naturaleza exacta de la energía oscura es una materia de especulación. Se conoce que es muy homogénea, no muy densa y no se conoce la interacción con ninguna de las fuerzas fundamentales más que la gravedad. Como no es muy densa, unos 10−29 g/cm³, es difícil de imaginar experimentos para detectarla en laboratorio. La energía oscura sólo puede tener un profundo impacto en el Universo, ocupando el 70% de toda la energía, debido a que por el contrario llena uniformemente el espacio vacío. Los dos modelos principales son la quintaesencia y la constante cosmológica.

Una Supernova Ilumina a la Energía Oscura

3 de Abril de 2001 -- El Telescopio Espacial Hubble (Hubble Space Telescope) de la NASA ha localizado un estallido de luz proveniente de una estrella en explosión, que se encuentra mucho más lejos de la Tierra que cualquier estrella antes vista -- una explosión de supernova en el universo temprano que puede iluminar un oscuro misterio a "escala cósmica".
Esta explosión estelar es extraordinaria: por la gran distancia donde se localiza --a 10 mil millones de años luz de nuestro planeta -- y porque respalda la hipótesis sobre la existencia de una misteriosa forma de "oscura energía" extendida en el cosmos. A principios del siglo pasado, Albert Einstein propuso el concepto de energía oscura -que aleja a las galaxias unas de otras a un ritmo incesante que más tarde descartó.
Esta imagen es del Telescopio Espacial Hubble (Hubble Space Telescope)